573 research outputs found

    Explicit product ensembles for separable quantum states

    Get PDF
    We present a general method for constructing pure-product-state representations for density operators of NN quantum bits. If such a representation has nonnegative expansion coefficients, it provides an explicit separable ensemble for the density operator. We derive the condition for separability of a mixture of the Greenberger-Horne-Zeilinger state with the maximally mixed state.Comment: 15 pages, no figure

    Quantum state diffusion with a moving basis: computing quantum-optical spectra

    Full text link
    Quantum state diffusion (QSD) as a tool to solve quantum-optical master equations by stochastic simulation can be made several orders of magnitude more efficient if states in Hilbert space are represented in a moving basis of excited coherent states. The large savings in computer memory and time are due to the localization property of the QSD equation. We show how the method can be used to compute spectra and give an application to second harmonic generation.Comment: 8 pages in RevTeX, 1 uuencoded postscript figure, submitted to Phys. Rev.

    Quantum state diffusion, localization and computation

    Full text link
    Numerical simulation of individual open quantum systems has proven advantages over density operator computations. Quantum state diffusion with a moving basis (MQSD) provides a practical numerical simulation method which takes full advantage of the localization of quantum states into wave packets occupying small regions of classical phase space. Following and extending the original proposal of Percival, Alber and Steimle, we show that MQSD can provide a further gain over ordinary QSD and other quantum trajectory methods of many orders of magnitude in computational space and time. Because of these gains, it is even possible to calculate an open quantum system trajectory when the corresponding isolated system is intractable. MQSD is particularly advantageous where classical or semiclassical dynamics provides an adequate qualitative picture but is numerically inaccurate because of significant quantum effects. The principles are illustrated by computations for the quantum Duffing oscillator and for second harmonic generation in quantum optics. Potential applications in atomic and molecular dynamics, quantum circuits and quantum computation are suggested.Comment: 16 pages in LaTeX, 2 uuencoded postscript figures, submitted to J. Phys.

    Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics

    Full text link
    We re-examine the problem of the "Loschmidt echo", which measures the sensitivity to perturbation of quantum chaotic dynamics. The overlap squared M(t)M(t) of two wave packets evolving under slightly different Hamiltonians is shown to have the double-exponential initial decay exp(constant×e2λ0t)\propto \exp(-{\rm constant}\times e^{2\lambda_0 t}) in the main part of phase space. The coefficient λ0\lambda_0 is the self-averaging Lyapunov exponent. The average decay Mˉeλ1t\bar{M}\propto e^{-\lambda_1 t} is single exponential with a different coefficient λ1\lambda_1. The volume of phase space that contributes to Mˉ\bar{M} vanishes in the classical limit 0\hbar\to 0 for times less than the Ehrenfest time τE=12λ01ln\tau_E=\frac{1}{2}\lambda_0^{-1}|\ln \hbar|. It is only after the Ehrenfest time that the average decay is representative for a typical initial condition.Comment: 4 pages, 4 figures, [2017: fixed broken postscript figures

    Compatibility of quantum states

    Full text link
    We introduce a measure of the compatibility between quantum states--the likelihood that two density matrices describe the same object. Our measure is motivated by two elementary requirements, which lead to a natural definition. We list some properties of this measure, and discuss its relation to the problem of combining two observers' states of knowledge.Comment: 4 pages, no figure
    corecore